首页 未命名正文

linux编程_基于OpenCV的人脸识别程序

云返利网 未命名 2020-05-26 09:08:17 13 0

1. 剖析opencv自带人脸识别源码(……/opencv-3.1.0/samples/cpp/facedetect.cpp)

@ 操作系统:Ubuntu 15.04

OpenCV版本:3.1.0

#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>

using namespace std;
using namespace cv;

static void help()
{
    cout << "\nThis program demonstrates the cascade recognizer. Now you can use Haar or LBP features.\n"
            "This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
            "It's most known use is for faces.\n"
            "Usage:\n"
            "./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
              "  [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
              "  [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
              "  [--try-flip]\n"
              "  [filename|camera_index]\n\n"
            "see facedetect.cmd for one call:\n"
            "./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n"
            "During execution:\n\tHit any key to quit.\n"
            "\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
}

void detectAndDraw( Mat& img, CascadeClassifier& cascade,
                    CascadeClassifier& nestedCascade,
                    double scale, bool tryflip );

string cascadeName;
string nestedCascadeName;

int main( int argc, const char** argv )
{
    VideoCapture capture;
    Mat frame, image;
    string inputName;
    bool tryflip;

    // CascadeClassifier是Opencv中做人脸检测的时刻的一个级联分类器,现在有两种选择:一是使用老版本的CvHaarClassifierCascade函数,一是使用新版本的CascadeClassifier类。老版本的分类器只支持类Haar特征,而新版本的分类器既可以使用Haar,也可以使用LBP特征。
    CascadeClassifier cascade, nestedCascade;
    double scale;

    cv::CommandLineParser parser(argc, argv,
        "{help h||}"
        "{cascade|../../data/haarcascades/haarcascade_frontalface_alt.xml|}"
        "{nested-cascade|../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|}"
        "{scale|1|}{try-flip||}{@filename||}"
    );
    if (parser.has("help"))
    {
        help();
        return 0;
    }

    // 问题1:不用界说返回类型?
    cascadeName = parser.get<string>("cascade");
    nestedCascadeName = parser.get<string>("nested-cascade");
    scale = parser.get<double>("scale");
    if (scale < 1)
        scale = 1;
    tryflip = parser.has("try-flip");
    inputName = parser.get<string>("@filename");
    std::cout << inputName << std::endl;  // test
    if (!parser.check())
    {
        parser.printErrors();
        return 0;
    }
 
    // 加载模子
    if ( !nestedCascade.load( nestedCascadeName ) )
        cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
    if( !cascade.load( cascadeName ) )
    {
        cerr << "ERROR: Could not load classifier cascade" << endl;
        help();
        return -1;
    }
    // 读取摄像头
    // isdigit检测字符是否为阿拉伯数字
    if( inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1) )
    {
        int c = inputName.empty() ? 0 : inputName[0] - '0';
        // 此处若系统在虚拟机上,需在虚拟机中设置接受摄像头:虚拟机(M)-> 可移动装备 -> 摄像头名称 -> 毗邻(断开与主机毗邻)
        if(!capture.open(c))
            cout << "Capture from camera #" <<  c << " didn't work" << endl;
        else {
          capture.set(CV_CAP_PROP_FRAME_WIDTH, 640);
          capture.set(CV_CAP_PROP_FRAME_HEIGHT, 480);
        }
    }
    else if( inputName.size() )
    {
        image = imread( inputName, 1 );
        if( image.empty() )
        {
            if(!capture.open( inputName ))
                cout << "Could not read " << inputName << endl;
        }
    }
    else
    {
        image = imread( "../data/lena.jpg", 1 );
        if(image.empty()) cout << "Couldn't read ../data/lena.jpg" << endl;
    }

    if( capture.isOpened() )
    {
        cout << "Video capturing has been started ..." << endl;


        for(;;)
        {
            std::cout << "capturing..." << std::endl;  // test
            capture >> frame;
            if( frame.empty() )
                break;

            Mat frame1 = frame.clone();
            std::cout << "Start to detect..." << std::endl;  // test
            detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip );

            int c = waitKey(10);
            if( c == 27 || c == 'q' || c == 'Q' )
                break;
        }
    }
    else
    {
        cout << "Detecting face(s) in " << inputName << endl;
        if( !image.empty() )
        {
            detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
            waitKey(0);
        }
        else if( !inputName.empty() )
        {
            /* assume it is a text file containing the
            list of the image filenames to be processed - one per line */
            FILE* f = fopen( inputName.c_str(), "rt" );
            if( f )
            {
                char buf[1000+1];
                while( fgets( buf, 1000, f ) )
                {
                    int len = (int)strlen(buf), c;
                    while( len > 0 && isspace(buf[len-1]) )
                        len--;
                    buf[len] = '\0';
                    cout << "file " << buf << endl;
                    image = imread( buf, 1 );
                    if( !image.empty() )
                    {
                        detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
                        c = waitKey(0);
                        if( c == 27 || c == 'q' || c == 'Q' )
                            break;
                    }
                    else
                    {
                        cerr << "Aw snap, couldn't read image " << buf << endl;
                    }
                }
                fclose(f);
            }
        }
    }

    return 0;
}

void detectAndDraw( Mat& img, CascadeClassifier& cascade,
                    CascadeClassifier& nestedCascade,
                    double scale, bool tryflip )
{
    double t = 0;
    vector<Rect> faces, faces2;
    const static Scalar colors[] =
    {
        Scalar(255,0,0),
        Scalar(255,128,0),
        Scalar(255,255,0),
        Scalar(0,255,0),
        Scalar(0,128,255),
        Scalar(0,255,255),
        Scalar(0,0,255),
        Scalar(255,0,255)
    };
    Mat gray, smallImg;

    cvtColor( img, gray, COLOR_BGR2GRAY );
    double fx = 1 / scale;
    resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR );
    equalizeHist( smallImg, smallImg );

    t = (double)cvGetTickCount();
    cascade.detectMultiScale( smallImg, faces,
        1.1, 2, 0
        //|CASCADE_FIND_BIGGEST_OBJECT
        //|CASCADE_DO_ROUGH_SEARCH
        |CASCADE_SCALE_IMAGE,
        Size(30, 30) );
    if( tryflip )
    {
        flip(smallImg, smallImg, 1);
        cascade.detectMultiScale( smallImg, faces2,
                                1.1, 2, 0
                                //|CASCADE_FIND_BIGGEST_OBJECT
                                //|CASCADE_DO_ROUGH_SEARCH
                                |CASCADE_SCALE_IMAGE,
                                Size(30, 30) );
        for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
        {
            faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
        }
    }
    t = (double)cvGetTickCount() - t;
    printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
    for ( size_t i = 0; i < faces.size(); i++ )
    {
        Rect r = faces[i];
        Mat smallImgROI;
        vector<Rect> nestedObjects;
        Point center;
        Scalar color = colors[i%8];
        int radius;

        double aspect_ratio = (double)r.width/r.height;
        if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
        {
            center.x = cvRound((r.x + r.width*0.5)*scale);
            center.y = cvRound((r.y + r.height*0.5)*scale);
            radius = cvRound((r.width + r.height)*0.25*scale);
            circle( img, center, radius, color, 3, 8, 0 );
        }
        else
            rectangle( img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
                      cvPoint(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
                      color, 3, 8, 0);
        if( nestedCascade.empty() )
            continue;
        smallImgROI = smallImg( r );
        nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
            1.1, 2, 0
            //|CASCADE_FIND_BIGGEST_OBJECT
            //|CASCADE_DO_ROUGH_SEARCH
            //|CASCADE_DO_CANNY_PRUNING
            |CASCADE_SCALE_IMAGE,
            Size(30, 30) );
        for ( size_t j = 0; j < nestedObjects.size(); j++ )
        {
            Rect nr = nestedObjects[j];
            center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
            center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
            radius = cvRound((nr.width + nr.height)*0.25*scale);
            circle( img, center, radius, color, 3, 8, 0 );
        }
    }
    imshow( "result", img );
}

问题未解决:

运行到capture>>frame;时泛起select timeout的错误;

@ 操作系统:Windows 10

OpenCV版本:3.1.0

代码与Linux版本基本相同,未泛起错误;

OpenCV官方教程中文版(For Python) PDF  http://www.linuxidc.com/Linux/2015-08/121400.htm

Ubuntu Linux下安装OpenCV2.4.1所需包 http://www.linuxidc.com/Linux/2012-08/68184.htm

Ubuntu 16.04上用CMake图形界面交织编译树莓派的OpenCV3.0  http://www.linuxidc.com/Linux/2016-10/135914.htm

Ubuntu 12.04下安装OpenCV 2.4.5总结 http://www.linuxidc.com/Linux/2013-06/86704.htm

Ubuntu 10.04中安装OpenCv2.1九步曲 http://www.linuxidc.com/Linux/2010-09/28678.htm

基于QT和OpenCV的人脸识别系统 http://www.linuxidc.com/Linux/2011-11/47806.htm

[翻译]Ubuntu 14.04, 13.10 下安装 OpenCV 2.4.9  http://www.linuxidc.com/Linux/2014-12/110045.htm

【关于云返利网】

云返利网是阿里云、腾讯云、华为云产品推广返利平台,在各个品牌云产品官网优惠活动之外,云返利网还提供返利。您可以无门槛获得阿里云、华为云、腾讯云所有产品返利,在官网下单后就可以领取,无论是自己用、公司用还是帮客户采购,您个人都可以获得返利。云返利网的目标是让返利更多、更快、更简单!详情咨询13121395187(微信同号)